Analysis and Visualization
Feature Selection from Enhanced Dataset:
import pandas as pd
from bioneuralnet.analysis.feature_selector import FeatureSelector
from bioneuralnet.network_embedding import GNNEmbedding
def main():
phenotype_df = pd.DataFrame({
'SampleID': ['S1', 'S2', 'S3', 'S4'],
'Phenotype': ['Control', 'Treatment', 'Control', 'Treatment']
})
omics_df1 = pd.DataFrame({
'SampleID': ['S1', 'S2', 'S3', 'S4'],
'GeneA': [1.2, 2.3, 3.1, 4.0],
'GeneB': [2.1, 3.4, 1.2, 3.3],
'GeneC': [3.3, 1.5, 2.2, 4.1]
})
omics_df2 = pd.DataFrame({
'SampleID': ['S1', 'S2', 'S3', 'S4'],
'GeneD': [4.2, 5.3, 6.1, 7.0],
'GeneE': [5.1, 6.4, 4.2, 6.3],
'GeneF': [6.3, 4.5, 5.2, 7.1]
})
clinical_data_df = pd.DataFrame({
'SampleID': ['S1', 'S2', 'S3', 'S4'],
'Age': [30, 40, 50, 60],
'Sex': ['Male', 'Female', 'Female', 'Male'],
'BMI': [25.0, 28.1, 30.2, 24.5]
})
adjacency_matrix = pd.DataFrame({
'GeneA': [1.0, 0.8, 0.3, 0.0],
'GeneB': [0.8, 1.0, 0.4, 0.0],
'GeneC': [0.3, 0.4, 1.0, 0.7],
'GeneD': [0.0, 0.0, 0.7, 1.0]
}, index=['GeneA', 'GeneB', 'GeneC', 'GeneD'])
gnn_embed = GNNEmbedding(
omics_list=[omics_df1.set_index('SampleID'), omics_df2.set_index('SampleID')],
phenotype_df=phenotype_df.set_index('SampleID'),
clinical_data_df=clinical_data_df.set_index('SampleID'),
adjacency_matrix=adjacency_matrix,
model_type='GCN'
)
gnn_embeddings = gnn_embed.run()
print("\nGNN Embeddings:")
print(gnn_embeddings['graph'].head())
combined_omics_data = pd.merge(omics_df1, omics_df2, on='SampleID')
phenotype_series = phenotype_df.set_index('SampleID')['Phenotype']
feature_selector = FeatureSelector(
enhanced_omics_data=combined_omics_data.set_index('SampleID'),
phenotype_data=phenotype_series,
num_features=20,
selection_method='lasso'
)
selected_features = feature_selector.run_feature_selection()
print("\nSelected Multi-Omics Features:")
print(selected_features.head())
if __name__ == "__main__":
main()
Static Visualization:
import pandas as pd
from bioneuralnet.analysis import StaticVisualizer
def main():
adjacency_matrix = pd.read_csv('input/adjacency_matrix.csv', index_col=0)
static_vis = StaticVisualizer(
adjacency_matrix=adjacency_matrix,
layout='spring',
node_size=300,
node_color='skyblue',
edge_color='gray',
linewidths=1.0,
font_size=10,
output_dir='visualizations/static',
output_filename='static_network.png'
)
G = static_vis.generate_graph()
static_vis.visualize(G)
print("Static visualization workflow completed successfully.")
if __name__ == "__main__":
main()
Dynamic Visualization:
import pandas as pd
from bioneuralnet.analysis import DynamicVisualizer
def main():
adjacency_matrix = pd.read_csv('input/adjacency_matrix.csv', index_col=0)
dynamic_vis = DynamicVisualizer(
adjacency_matrix=adjacency_matrix,
layout='spring',
notebook=False,
bgcolor='#ffffff',
font_color='black',
output_dir='visualizations/dynamic',
output_filename='dynamic_network.html',
width="100%",
height="800px"
)
G = dynamic_vis.generate_graph()
dynamic_vis.visualize(G)
print("Dynamic visualization workflow completed successfully.")
if __name__ == "__main__":
main()