Disease Prediction
Disease Prediction using Multi-Omics Networks (DPMON):
import pandas as pd
from bioneuralnet.downstream_task import DPMON
def main():
adjacency_matrix = pd.read_csv('input/adjacency_matrix.csv', index_col=0)
protein_data = pd.read_csv('input/proteins.csv', index_col=0)
metabolite_data = pd.read_csv('input/metabolites.csv', index_col=0)
phenotype_df = pd.read_csv('input/phenotype_data.csv', index_col=0)
clinical_data_df = pd.read_csv('input/clinical_data.csv', index_col=0)
dpmon = DPMON(
adjacency_matrix=adjacency_matrix,
omics_list=[protein_data, metabolite_data],
phenotype_file=phenotype_df,
features_file=clinical_data_df,
model='GCN',
)
predictions_df = dpmon.run()
if not predictions_df.empty:
print("Disease prediction completed successfully. Sample predictions:")
print(predictions_df.head())
else:
print("Hyperparameter tuning completed (no predictions generated).")
if __name__ == "__main__":
main()